On this page
Inverse confocal microscope with up to 6 channels (2 PMT, 4 GaAsP, up to 8192 x 8192 pixels). Airyscan 2 detector (32 channel GaAsP) for super-resolution imaging or high-speed acquisition (Multiplex mode with 4x or 8x parallelisation of detection), transmitted light PMT. FCS option and spectral imaging (via sequential acquisition). Motorized XY stage with Z-Piezo top plate, stage-top environmental control (temperature/CO2) and Python interface for complex workflows. Widefield illumination: 4-channel Zeiss Colibri LED, halogen lamp (room 1.223)
Objectives
Lasers
Inverse confocal microscope with two VSDs (Variable Secondary Dichroic) allowing for finer spectral adjustment and spectral Airyscan imaging. Two highly sensitive GaAsP-PMTs for high sensitivity + Airyscan 2 detector (32 channel GaAsP) for super-resolution imaging or high-speed acquisition (Multiplex mode with up to 4x parallelisation of detection), transmitted light PMT. AI Sample finder for automated sample recognition. Motorized XY stage with Z-Piezo top plate, fully incubated. Widefield illumination: 4-channel Zeiss Colibri LED, halogen lamp, Axiocam 305 for sample overviews. (room 1.223)
Objectives
Lasers
Inverse confocal microscope with 2 PMT channels (up to 2048 x 2048 pixels), transmitted light PMT and motorized stage. Spectral imaging via sequential acquisition. Multipositioning, tiling and online stitching. Widefield illumination: halogen lamp, CoolLED pE-2 (room 1.223)
Objectives
Lasers
Inverse super-resolution microscope for lattice SIM, 3D SMLM (PALM/STORM), TIRF and laser widefield imaging. Apotome mode for optical sectioning of thick specimen. Dual-camera port with 2 sCMOS cameras for fast acquisitions. Lasers to image dyes from blue to far red. Multi-positioning (Piezo-driven XY stage with Z-Piezo insert) and hardware autofocus. Environmental box for live imaging with temperature and CO2 control. Widefield illumination: Excelitas Xylis (white LED), halogen lamp. Processing PC for offline image processing (room 1.723)
Objectives
Lasers
System for high-throughput live imaging and screening. For multiwell plates (glass or plastic bottom), dishes and chamber slides. Hardware autofocus, autocorr objectives (50x with water immersion), magnification changer (up to 2x), sCMOS camera, 7-color LED for fluorescence, IR-LED for transmitted light and phase gradient contrast, temperature/CO2 control. Python interface for real-time image analysis and custom workflows (room 1.320)
Objectives
Upright point scanning microscope with 2 avalanche photodiode detectors for dual-channel 2D STED (orange, dark red) or conventional confocal imaging of 3 dyes (green, orange and dark red). Piezo-driven z-focus for 3D acquisition, manual XY stage for standard slides. Widefield illumination: halogen lamp, CoolLED pE-2 (room 1.723)
Objectives
Lasers
Recommended dyes (maximum resolution in brackets)
Inverse spinning disk microscope unit for fast pseudo-confocal imaging, preferably for live applications at ambient temperature. Fast sCMOS and high-sensitivity EM-CCD camera. Motorized XY stage with Piezo Z-drive and real time controller for fast 3D imaging, point scanner for FRAP/photoactivation with all available laser lines, stage-top temperature control and a CherryTemp heater/cooler for fast temperature shift experiments (10-45°C). Widefield illumination: SpectraX LED lamp, white LED (room 1.223)
Objectives
Lasers
Inverse spinning disk microscope (Nikon Ti2E double-deck stand) for fast pseudo-confocal imaging, preferably for long-term live applications. Fast high-resolution sCMOS or sensitive EM-CCD camera, multi-positioning and full environmental control. Pulsed 355 nm laser for nanodissection, all lasers available for photomanipulation (FRAP, photoactivation). Widefield illumination: 8-color SPECTRA-III LED, white LED for transmitted light (room 1.318).
Objectives:
On request:
Lasers:
Inverse widefield microscope unit with solid state LED light source and filter sets to image all conventional dyes. 3-color TIRF and single-point 405 nm FRAP option. Equipped with a 4 Megapixel sCMOS camera for fast high-resolution imaging, sensitive EM-CCD for TIRF and low-light applications, or color CMOS camera. Motorized stage for 5D-data acquisition, full environmental control for long-term live imaging. Microfluidics device for mammalian cells, yeast and bacteria (room 1.223)
Objectives
Lasers
Inverse widefield microscope in Sedat setup equipped with a 4-Megapixel sCMOS camera for fast fluorescence and brightfield imaging. 7-color solid state light source for fluorescence imaging with Köhler and critical illumination, respectively, white LED for brightfield, DIC optics. Motorized XY stage, hardware autofocus and environmental chamber for temperature and CO2 control, onboard deconvolution (room 1.320)
Objectives
This microscope is no longer at the facility, if you need any information on its usage, contact Alexander Dammermann.
Inverse widefield epifluorescence microscope unit with 1.3 Megapixel CCD camera, 7-color LED for fluorescence, white LED for transmitted light. XYZ-scanning stage for 5D acquisitions, onboard deconvolution algorithms fitted to the optical path of the system. Optional: critical fluorescence illumination for dim samples (room 1.320)
Objectives
Five microscopes (one on each floor and a teaching microscope) in the Perutz main building have been upgraded to state-of-the-art technology. They host high-end CCD cameras, they are fully equipped for standard fluorescence/brightfield imaging and are motorized to a large extent. Irmgard Fischer is the responsible person for these microscope. She helps in training, troubleshooting and maintenance/service. It is mandatory to follow the "in-house"-specific administrative rules!
Irmgard Fischer, room 4.621/5.506, phone ext. 52866, mobile 0660/7681381
2nd floor (room 2305) - Zeiss Observer Z1, inverted
3rd floor (room 3517) - Axio Observer Z1, inverted
4th floor (room 4407) - Axio Imager Z2, upright
5th floor (room 5423) - Axio Imager M2, upright
Teaching (room 5519) - Axio Observer Z1, inverse
Two image processing workstations in the Max Perutz Labs main building (room 6.508) with stand-alone microscope software (Olympus cellSens, Zeiss ZEN), professional software packages for deconvolution and 3/4D image processing (Imaris, Huygens Professional) and open source bioimage analysis software (Fiji, Icy, IMOD, CellProfiler, cellpose, Aydin, FRAP-Analyser and MIAnalyzer).
Technical specifications and software
Acquifer HIVE acquistion server with 10 TB storage space (RAID 5), Intel Xeon E5-1650 v3 CPU (3.50 GHz), 128 GB RAM and PNY NVIDIA Quadro P1000 GPU (4 GB RAM). Connected microscopes (10 Gb/s):
4U Intel Dual-CPU RI2424 server with 24 TB storage space (RAID 5), 2x Intel Xeon Bronze 3104 (1.70 GHz), 64 GB RAM. Connected microscopes:
Secure central repository for microscopic images for research groups. Allows to organize, share, search for, view and analyze data using a web interface. Over 140 image file formats are supported
Fiji/ImageJ timestamp reader plugin for Bio-Formats metadata
Imports timestamps from the following file formats into ImageJ/Fiji:
Download plugin | Instructions | Source code
GUV Profiler
Fiji plugin to analyze the fluorescence intensities of giant unilamellar vesicles (GUVs)
Potential trainees must provide an organized experimental strategy to discuss with the facility staff and have already own samples for an individualized training session.
Attend the Introductory Lecture including laser safety instructions.**
At the PPMS booking system (https://ppms.eu/maxperutzlabs) apply for a training. Fill in and submit the Training Application. We will organize a meeting, discuss most forward strategies and find the proper setup.*
A training unit with the facility staff will be organized – training units will be split into "how to do" and "optimize my sample" sessions (on separate days).
Before you attend the sessions, please download our General Administrative Rules and read them thoroughly!
*Optional: facility personnel evaluates potential applicability with user specific samples, if selection of the proper microscope system remains unclear.
**1.) and 2.) may - in rare cases - be switched.
Lectures always take place in the seminar rooms in VBC5, level E1. Lecture dates are announced regularly. To register for the lecture please select a slot in the termino calendar (https://www.termino.gv.at/meet/b/469442223a0697e7cec35be1b797502f-399347).
@ "IN HOUSE" MICROSCOPES: Apply for a training via PPMS (see above) using the respective In-House-Training application form. Don't forget to read the IN-HOUSE-specific administrative rules.
Please contact the facility staff: lightmicroscopy@mfpl.ac.at
VBC5 Level E1
Campus-Vienna-Biocenter 5, 1030 Vienna
Office: room 1.618 (phone ext. 61672)
Microscopes 1: room 1.223 (phone ext. 61678)
Microscopes 2: room 1.320 (phone ext. 61677)
Microscopes 3: room 1.318 (phone ext. 61679)
Microscopes 4: room 1.723 (phone ext. 61675)
Tissue Culture: room 1.219 (phone ext. 52247)
Image Processing Workstations: Max Perutz Labs main building, 6th floor, room 6.508.
Upgrade of our Live Spinning Disc Unit to a “Tandem” microscope system:
We have upgraded our live spinning disc system with an additional spinning disc unit, the W1. The microscope can now work as a unique “tandem” spinning disc, choosing the benefits of either the X1 (low-light applications) or the W1 (thicker samples, larger field-of-view) using a simple laser switch technology. The cameras (EM-CCd and sCMOS) attached to the new W1 unit are identical to the existing ones and allow optimal comparison between the two technologies for the respective experimental plans of our users.
Nucleic Acids Research, gkaa859, doi.org/10.1093/nar/gkaa859