On this page
The main interest of my lab is to investigate how solar and lunar light are sensed by the nervous system and how this light information impacts on the animals' information processing and endogenous clocks.
The moon is an important timing cue for numerous marine species, ranging from corals to worms, fishes and turtles. Such lunar timing controls reproductive development, physiology and behavior. Despite the fundamental nature and widespread occurrence of lunar-controlled rhythms, little is known about their molecular mechanisms, their interplay with rhythms and oscillators of different period lengths, and their modulation in changing environments. We focus on the marine bristle worm Platynereis dumerilii and the midge Clunio marinus to close these knowledge gaps. Techniques, including transgenesis, inducible cell ablations, as well as TALEN/Crispr-Cas-mediated genome engineering provide us with first insights into the genes required for solar vs. lunar light detection. Linked to our interest in photoreceptors, we uncovered the presence of functional opsin photoreceptors in inter- and motorneurons of medaka and zebrafish. We propose that they might function as nature’s own optogenetics.
Kristin Tessmar studied biology at the University of Heidelberg, with research at the MGH, Boston, the EMBL-Heidelberg and the University of Cambridge, UK. After her doctorate from the University of Marburg, she did her post-doc at the EMBL, Heidelberg. In 2008 she joined the Max Perutz Labs/ University of Vienna as a junior group leader. Since 2017 she is full professor for chronobiology.
(2016) NATURE. PMID: 27871090
What marine midges can tell us about clocks and calendars
The non-biting marine midge Clunio marinus lives along Europe’s tide-shapen coasts, where precise timing is of existential importance: Reproduction and oviposition must occur when the tide is at its lowest.
The tides, and therefore also low tide, are influenced by both the sun and the moon. To foresee the ideal time of reproduction, Clunio has two internal clocks: a circadian (daily) clock, comparable to a watch, set by the sun, and a circalunar (monthly) clock, comparable to a calendar, set by the moon.
Due to geographical causes, the timing of low tides differs between geographical locations. Therefore, the midges have to “set” their clocks in accordance with their position. Scientists had already discovered in the 1960s that midges living along the coast of the Atlantic sea have genetically adapted their circadian clocks to the local occurrence of tides.
Kristin Tessmar-Raible and her team then investigated how such adaptations may occur on a molecular level. The work was spear-headed by the post-doc Tobias Kaiser, who had previously already uncovered that similar adaptations are also true for circalunar clocks.
Tobias sequenced and compared different Clunio genomes in a tight collaboration with Arndt von Haeseler’s group. This allowed the researchers to unravel the genomic sequences that likely underlie the circadian and circalunar timing differences. Further molecular work involving VBC PhD student Birgit Poehn and collaborations with Thomas Hummel’s (Faculty of Life Sciences, University of Vienna) and Florian Heyd’s groups (FU Berlin, Germany) then provided a first mechanistic model, how such molecular adaptations can lead to differential circadian timing.
The researcher’s results point towards a specific protein, called Calcium/Calmodlin-dependent kinase II (CaMKII), being the main effector behind the adaptation of the circadian clock to the geographical environment. “Different variants of CaMKII appear to let the circadian clock run either faster or slower,” explains Tessmar-Raible. “And it is of course an interesting aspect that this protein, which hasn’t changed much during the course of evolution, can also be found in humans. The question therefore emerges, if CaMKII can also play a role in human chronotypes.”
Remarkably, the protein CAMKII is one of the most abundant proteins in the human brain and has already been linked to neuropsychiatric disorders, which often appear in conjunction with malfunctions of the circadian clock. “Our study raises many intriguing questions – apart from the modulation of the circadian clock, it also suggests molecular candidates for the modulation of the ‘internal calendar’, the lunar clock. And in understanding these clocks we are still at the very beginning,” comments Tobias Kaiser.
(2021) Nat Ecol Evol. PMID: 33432133
More than just a sun tan: ultraviolet light helps marine animals to tell the time of year
Changes in daylength are a well-established annual timing cue for ani-mal behavior and physiology. The marine bristle Platynereis dumerilii senses seasonal intensity changes of UVA/deep violet light in addition to day length. This helps the worms to adjust the levels of important neurohormones and their behavior.
UVA-sensitive light receptors with similar properties are also present in other organisms, ranging from fish to humans. UVA light is typically thought of as something that organisms should be protected from, but in these marine worms it clearly also has a biological function. It will be interesting to find out what impact UVA levels have on other animals, including humans.
As part of a complex environment, the correct timing of the behavior of marine life also has an impact on populations and the ecosystem of the ocean. How UVA light exactly influences this delicate balance is still unclear. Understanding more about the relevance of UVA light for marine animal physiology and behavior will therefore also be of ecological importance.
(2017) Nature Methods. PMID: 28825703
When fish swim in the holodeck: Virtual worlds allow new experimental designs for the study of brain function
A person sees another person and depending on the context very different interactions can take place. The final outcome after the initial visual experience is a result of complex interactions of neurons in different brain regions- processes that are still very little understood. To study the neuronal basis underlying behavior, scientists have developed a broad range of techniques, most of which require either the partial or full immobilization of the animal. This restricts sensory input and feedback and ultimately changes the neuronal and behavioral responses. In addition, mimicking natural conditions in a laboratory is difficult.
The groups of Andrew Straw at the University of Freiburg, Germany and Kristin Tessmar-Raible developed a system called “FreemoVR”, that overcomes most of these hurdles by immersing a freely-moving animal in a reactive, three-dimensional world controlled by a computer. FreemoVR enables the experimenter to control the animal’s visual experience, while maintaining the natural feedback for its tactile senses.
To do so, the scientists built behavioral arenas whose walls or floors were computer displays, including arbitrarily shaped projection surfaces. Using computer games technology, the animal could then explore the VR environment in these arenas from its own perspective while it walked, flew or swam.
“We wanted to create a holodeck for animals so that they would experience a reactive, immersive environment under computer control so that we could perform experiments that would reveal how they see objects, the environment, and other animals,” says Andrew Straw, leading in the development of FreemoVR.
Using FreemoVR, the teams found previously unnoticed behavioral differences between a wildtype and a mutant zebrafish strain, showing the sensitivity of the system. The scientists further explored the rules that govern social interactions of real zebrafish with virtual ones and found that the prospective leader fish minimizes the risk of losing followers by balancing his internal preference for a swimming direction with the social responsiveness of the subordinate fish.
Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin.
Veedin Rajan, Vinoth Babu; Häfker, N Sören; Arboleda, Enrique; Poehn, Birgit; Gossenreiter, Thomas; Gerrard, Elliot; Hofbauer, Maximillian; Mühlestein, Christian; Bileck, Andrea; Gerner, Christopher; Ribera d'Alcala, Maurizio; Buia, Maria C; Hartl, Markus; Lucas, Robert J; Tessmar-Raible, Kristin
The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks.
Andreatta, Gabriele; Tessmar-Raible, Kristin
The genomic basis of circadian and circalunar timing adaptations in a midge.
Kaiser, Tobias S; Poehn, Birgit; Szkiba, David; Preussner, Marco; Sedlazeck, Fritz J; Zrim, Alexander; Neumann, Tobias; Nguyen, Lam-Tung; Betancourt, Andrea J; Hummel, Thomas; Vogel, Heiko; Dorner, Silke; Heyd, Florian; von Haeseler, Arndt; Tessmar-Raible, Kristin
Virtual reality for freely moving animals.
Stowers, John R; Hofbauer, Maximilian; Bastien, Renaud; Griessner, Johannes; Higgins, Peter; Farooqui, Sarfarazhussain; Fischer, Ruth M; Nowikovsky, Karin; Haubensak, Wulf; Couzin, Iain D; Tessmar-Raible, Kristin; Straw, Andrew D
Project title “Dissecting the mechanistic basis of moon-controlled monthly timing mechanisms in marine environments”
Project title “Analyses of inner brain Opsins in the vertebrate CNS”
Project title: “Molecular neurobiology of a moonlight entrained circalunar clock”
Vice-Head
https://vds-cobene.univie.ac.at/about/
Nutrient-regulated control of lysosome function by signaling lipid conversion
Shedding Light on the Dark Side of Terrestrial Ecosystems: Assessing Biogeochemical Processes in Soils
Protein homeostasis and lifelong cell maintenance
Dissecting the turgor sensing mechanisms in the blast fungus Magnaporthe oryzae
Pikobodies: What does it take to bioengineer NLR immune receptor-nanobody fusions
When all is lost? Measuring historical signals
Gene regulatory mechanisms governing human development, evolution and variation
Regulation of Cerebral Cortex Morphogenesis by Migrating Cells
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced