Group Thomas Juffmann

Quantum Microscopy and Biophysics

On this page

test1 Test2

Test3

The Question

In any micrograph, the number of detected probe particles is fundamentally limited, either due to finite acquisition times or probe-induced sample damage. How can we optimize the sensitivity of a microscope and maximize the information that can be extracted from each detected probe particle?

The Approach

We employ cavity enhancement, quantum enhancement, and wave-front shaping techniques to optimize the sensitivity of interferometric imaging techniques. We do so both in electron and light microscopy.

Thomas Juffmann

Thomas Juffmann did his PhD on molecular quantum optics at the University of Vienna. He then moved to Stanford to work on quantum enhanced imaging with electrons and photons. After that, he joined the ENS Paris as an interdisciplinary HFSP fellow working on adaptive optics. In 2018, he started the Quantum Imaging and Biophysics group in a joint venture between the Faculty of Physics and the Max Perutz Labs.

Download CV

VBC5
Room: 1.610

   +43 1 4277 72520

Spotlights

PhD Selection 2023

Multi-pass (electron) Microscopy

Passing probe particles through a sample multiple times can increase the signal to noise per detected particle. We demonstrated full field cavity enhanced microscopy with light [1], and are now extending this approach to iScat measurments. We also showed theoretically [2], that the same principle could enable cryogenic electron microscopy at unprecedented low damage levels. The first multi-pass TEM is now in the making [3].

[1] Multi-pass microscopy; T. Juffmann, B. B. Klopfer, T. L.I. Frankort, P. Haslinger & M. A. Kasevich; Nature Communications, Vol. 7, 12858 (2016)

[2] Multi-pass transmission electron microscopy; T. Juffmann, S. A. Koppell, B. B. Klopfer, C. Ophus, R. M. Glaeser & M. A. Kasevich; Scientific Reports, Vol. 7, 1699 (2017)

[3] Design for a 10 keV multi-pass transmission electron microscope; S. A. Koppell, M. Mankos, A. J. Bowman, Y. Israel, T. Juffmann, B. B. Klopfer, M. A. Kasevich; Ultramicroscopy, Vol. 207, 112834 (2019)

Lowphi

Phase microscopy is based on interfering a signal wave with a reference wave. Depending on local, sample induced phase-shifts, the sensitivity of the most common phase microscopy techniques can be far from ideal. We could show this deriving the Cramer Rao bounds in phase imaging for any linear optical system [4]. Local Wave-front shaping for Phase Imaging (Lowphi) can then be used to adaptively optimize your microscope to a specific sample [5].

[4] Fundamental bounds on the precision of classical phase microscopes; D. Bouchet, J. Dong, D. Maestre, and T. Juffmann; arXiv:2011.04799 (2020)

[5] Local Optimization of Wave-fronts for high sensitivity Phase Imaging; T. Juffmann, A. de los Rios Sommer, S. Gigan; Optics Communications, Vol. 454, 124484 (2020)

     

     

    For more information and the latest news, please visit our lab website.

     

    If you want to join us, please e-mail me.

     

     

    Team

    Luis Ixquiac
    Master Student
       +43 1 4277 52213
    Room: 1.211

    Hanieh Jafarian
    PhD Student
       +43 1 4277 72524
    Room: 1.722

    Thomas Juffmann
    Group Leader
       +43 1 4277 72520
    Room: 1.610

    Sami Khawam
    PostDoc
       +43 1 4277 74320
    Room: 1.610

    Tilman Kräft
    Master Student
       52213
    Room: 18125

    Oliver Lueghammer
    PhD Student
       +43 1 4277 74320
    Room: 1.722

    Ivana Matousova Visova
    PostDoc
       +43 1 4277 72523
    Room: 1.614

    Martino Zanetti
    PhD Student
       +43 1 4277 52242
    Room: 1.211

    Ilia Zykov
    PhD Student
       +43 1 4277 72524
    Room: 1.722

    Selected Publications

     

    Pulsed laser deposition assisted epitaxial growth of cesium telluride photocathodes for high brightness electron sources

    2025 Scientific Reports, Rep 15, 3421
    DOI: 10.1038/s41598-025-87602-7

    K.P. Mondal, M. Gaowei, E. Echeverria, K. Evans-Lutterodt, J. Jordan-Sweet, T. Juffmann, S. Karkare, J. Maxson, SJ van der Molen, C. Pennington, P. Saha, J. Smedley, WG Stam, R. M. Tromp et al.

     

    A structural analysis of ordered Cs3Sb films grown on single crystal graphene and silicon carbide substrates

    2025 APL Materials, 13 (1): 011120
    DOI: 10.1063/5.0229850

    C. A. Pennington, M. Gaowei, E. M. Echeverria, K. Evans-Lutterodt, A. Galdi, T. Juffmann, S. Karkare, J. Maxson, S. J. van der Molen, P. Saha, J. Smedley, W. G. Stam, R. M. Tromp

     

    Unified Simulation Platform for Interference Microscopy

    2024 ACS Photonics 11 (7), 2745-2756
    DOI: 10.1021/acsphotonics.4c00621

    F. Hitzelhammer, A. Dostálová, I. Zykov, B. Platzer, C. Conrad-Billroth, T. Juffmann, U. Hohenester

     

    Growth of ultra-flat ultra-thin alkali antimonide photocathode films

    2024 APL Materials 12, 061114
    DOI: 10.1063/5.0213461

    G. WG Stam, M. Gaowei, EM. Echeverria, K. Evans-Lutterodt, J. Jordan-Sweet, T. Juffmann, S. Karkare, J. Maxson, SJ van der Molen, C. Pennington, P. Saha, J. Smedley, RM Tromp

     

    Quantum Limits of Position and Polarizability Estimation in the Optical Near Field

    2024 Phys. Rev. Res. 6 (2), 023204
    DOI: 10.48550/arXiv.2307.02348

    L. Kienesberger, T. Juffmann, S. Nimmrichter

     

    View all Publications of Group Juffmann

     

    21