Building muscles from liquids – phase separation in the Z-disc
The lab of Kristina Djinovic-Carugo and their collaborators report the first structure of FATZ-1 in complex with a-actinin, two important proteins found in the Z-disc of muscle fibers. The Z-disc is a supramolecular structure that anchors actin filaments in skeletal muscle. Intriguingly, FATZ-1, which is an intrinsically disordered protein implicated in the biogenesis of the Z-disc, also shows a propensity to form biomolecular condensates. The work raises interesting questions about the role of liquid-liquid phase separation in the formation of these structures. The study is published in Science Advances.
Biology in the holodeck: exploring cellular interactions with virtual reality
Jörg Menche was born in Würzburg and studied physics in Germany and Brazil. In his PhD at the Max-Planck-Institute of Colloids and Interfaces he focused on network theory. After postdoctoral work in the USA, he moved to Vienna in 2015 to start his own group at the CeMM Research Center for Molecular Medicine. Since 2020, he holds a joint professorship at the Max Perutz Labs and the Faculty of Mathematics of the University of Vienna. In our interview he talks about why he lives and breathes science and why he is excited about the future of virtual reality technology.
Anete Romanauska receives Denise P. Barlow Award
Postdoc Anete Romanauska from the Köhler lab has been awarded the Denise M. Barlow Award for "Best Thesis on Biological Mechanisms". After the Weintraub Award and the Vienna BioCenter PhD Award this marks the third distinction for Anete’s PhD research on lipid metabolism in the nucleus. The prize is named after molecular biologist Denise P. Barlow and recognizes academic talent among the four research institutes she was associated with: The Max Perutz Labs, the Institute of Molecular Biotechnology (IMBA), the Research Institute of Molecular Pathology (IMP), and the Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM). Its aim is to honor exceptional PhD work with an emphasis on novel biological mechanisms, something Denise P. Barlow was fond of.
A protein bodyguard – private security in the defense against oxidation
Oxidative stress is a biochemical condition in which the levels of oxidant molecules exceed the level of reductants (also known as anti-oxidants) in an organism. High concentrations of oxidants can alter the activity of enzymes and damage lipids, proteins and nucleic acids. Reporting in Molecular Cell, the lab of Javier Martinez reveals a novel and surprising mechanism of how an essential enzyme protects itself from oxidative stress. The tRNA ligase RTCB evolved with another protein whose sole purpose is to protect RTCB from oxidation. This protein, called PYROXD1, is linked to myopathies in humans and, paradoxically, uses a key cellular oxidant, NADP+, to protect its partner.
Keeping oocytes fit with Topoisomerase-3
During germ cell development faulty meiocytes are eliminated via apoptosis, a programmed cell death to ensure that only healthy gametes are produced. The lab of Verena Jantsch has now discovered a previously undescribed role for topoisomerase 3 (TOP-3) in oocyte quality control of the model organism C. elegans. In the absence of TOP-3, cells accumulate aberrant recombination intermediates in the pre-meiotic and meiotic compartments of the gonad that are less capable of triggering apoptosis. DNA repair is directed to less accurate pathways, resulting in a pool of oocytes with low quality. The study is published in the Journal of Cell Biology.
From Bench to Bedside - Molecular Pathogenesis to Precision Medicine
The Medical University of Vienna in cooperation with the University of Vienna has launched a new Master´s Program in Molecular Precision Medicine dedicated to an understanding of human pathogenesis and the treatment of disease at a molecular and mechanistic level. The course brings basic, translational, and clinical scientists together with doctors to educate students in the opportunities, challenges, and future perspectives of precision medicine.
No centrioles? No problem!
Centrioles are surrounded by a dense meshwork of proteins called the pericentriolar material (PCM), which together form centrosomes, the main microtubule-organizing centers of the cell. Alexander Dammermann’s group has discovered that centrosomes persist without centrioles in post-mitotic neurons of C. elegans. Key components of the PCM are expressed and incorporated into these centrosomes independent of centrioles and known mitotic regulators. The study, published in Current Biology, suggests that the assembly and maintenance of mitotic and non-mitotic centrosomes may be different.
Tiny droplets – huge impact: FWF doc.funds grant on liquid-liquid phase separation
The Austrian Science Fund has granted a doc.fund to a group of researchers from the Max Perutz Labs, the Faculty of Physics of the University of Vienna, the IMP and the IMBA. The grant is endowed with 1,6 Million Euros and will fund eight PhD positions over four years. Students will be recruited via the Vienna BioCenter PhD Program, and will receive multidisciplinary training to tackle fundamental questions in the field of liquid-liquid phase separation in biology. The doc.fund expects to start recruiting in fall 2021, and is coordinated by Bojan Zagrovic, a computational biologist at the Max Perutz Labs.
Hidden in plain sight: A-type lamins in the nucleus
Lamins are structural proteins found at the nuclear periphery, where they regulate the mechanical properties of the nucleus and the organization of genetic material within the nucleus. However, they also play a poorly understood role in the nucleoplasm. New work from the lab of Roland Foisner and their collaborators from the Bar Ilan University (Israel) now shows that binding of A-type lamins in the nuclear interior to a protein called LAP2α regulates their mobility and that of surrounding chromatin. The study is published in e-life.
Living in a gated community – how stem cells preserve their identity
Pluripotent stem cells can give rise to all the different types of specialized cells in the adult organism. Scientists led by Martin Leeb have identified hundreds of genes involved in the exit from naïve pluripotency and show that their activity is largely confined to five key signaling pathways. Their study, published in the EMBO Journal, provides a comprehensive map of the genetic circuits that gate this fundamental cell state transition.
Open Call: Max Perutz PhD Fellowships
The Max Perutz Labs have established a new doctoral fellowship program that will reward the most ambitious and innovative PhD students at the institute. The program is supported by the University of Vienna and the Medical University of Vienna and covers three fully funded positions per year.
Tearing down walls for a new beginning
The Max Perutz Labs are rebuilding key parts of the institute. The opening of the new entrance, reception, and study space for students marks a first milestone of a major project.
office@maxperutzlabs.ac.at
+43 1 4277 240 01
Vienna BioCenter Dr.-Bohr-Gasse 9, 1030 Vienna
This website uses cookies to ensure you get the best experience on our website.
» Privacy Policy