Fellowships

Three DOC fellowships for Max Perutz Labs students

Konstantina Georgiou, Sara Scinicariello, and Ameya Rakesh Khandekar have been awarded DOC fellowships by the Austrian Academy of Sciences (ÖAW) that will support their PhD projects, which focus on genome organization, protein degradation, and RNA biology respectively.

Jul 02, 2020

Biological roles of ANGEL enzymes

The 3’ ends of RNA molecules sometimes undergo chemical modifications that are critical for a variety of cellular processes. Ameya aims to uncover the physiological roles of a novel family of RNA modifying enzymes called ANGEL. Before joining the Martinez Lab in 2019, he studied cell biology in Mumbai where he gained experience working with Zebrafish. “In addition to using human cells, I will use this model organism (the zebrafish) to find out what ANGEL1 and ANGEL2 enzymes do in vivo, which RNAs they act on and which other proteins they interact with”, he explains. In the Martinez lab he has found the perfect environment for his studies: “Not only is the project interesting, the work ethic and lively atmosphere of the lab aligns with my expectations”, Ameya says.

 

Balancing immune reactions

Cytokines drive inflammation during infections. It is essential to lower the levels of these cytokines at later stages of infections to prevent auto-immunity. One of the key factors responsible for this immune-suppressive action is Tristetraprolin (TTP). However, how cells make sure that TTP acts at the right time during inflammation and how TTP itself is ultimately removed after infection resolution, remains unanswered. The goal of Sara Scinicariello’s research is to identify such regulators of TTP, and investigate how they work to ensure correct levels of pro- and anti-inflammatory factors during different stages of infection. “TTP is an unstable protein, its stability highly dependent on phosphorylation. I will identify novel factors controlling TTP phosphorylation and stability”, she explains. Sara did her Master’s degree in Rome, and joined Gijs Versteeg’s lab in 2017 for her PhD work, after she spent time at the Vienna BioCenter as a Summer School student.

 

Genes coding for muscle development: location and timing matters

Our genetic material is almost 2 meters long, yet it fits into the microscopically small cell nucleus. Even in this confined space, however, the precise location of genes is not random. The position of genes in the three-dimensional space of the nucleus can affect their activation and even the identity and function of a cell. “In my project I will investigate how certain genes that are important for muscle development are regulated spatially and temporally in the nucleus”, says Konstantina Georgiou, a second year PhD student in Roland Foisner’s lab. “To find out if and what proteins anchor the genes to the nuclear periphery and when they are released, I will develop tools that will help to detect the genes microscopically”, she explains. Originally from Greece, Konstantina studied biochemistry and biotechnology in Larissa at the University of Thessaly and joined the Foisner lab for her Master’s thesis.

Back to Overview
03