On this page
Eukaryotic cells are packed with many different organelles. In order to respond to environmental cues and coordinate homeostasis, cells need to tightly control the inter-organelle communication. One of the key organelles for the inter-organelle communication is the ER, which is the site of the synthesis and turnover of a major fraction of lipids and membrane proteins. The ER is directly connected to the nucleus by junctions with the outer nuclear membrane. This ER-to-nucleus connectivity is crucial for cellular homeostasis and to supply new lipids and membrane proteins to the nucleus during nuclear growth. However, what the structural nature of the ER-nucleus connection is, and how its size and number is regulated to support the key cellular functions, remains poorly understood. We aim to reveal the structure and function of this major yet poorly characterized inter-organelle connection and uncover the molecular mechanism governing it.
The correlative live imaging with high resolution electron microscopy that we have established previously, allows to visualise intra-cellular structures in situ in human cells in a spatio-temporally-resolved and quantitative manner. By combining this novel correlative imaging technology with quantitative live cell imaging and a microscopy-based loss-of-function screens, we will elucidate systematically how the structure and function of the ER-nucleus connection changes during nuclear growth, identify molecular players regulating them, and reveal how the ER-nucleus connectivity mechanistically controls the ER-to-nucleus communication.
Shotaro was born in Tokyo, Japan. He obtained a PhD in Biophysics at Kyoto University. In 2011, he moved to Germany to carry out postdoctoral work at the European Molecular Biology Laboratory (EMBL). In 2019, he started his own lab at the Max Perutz Labs in Vienna.
A correlative live imaging with electron microscopy was established that allows to examine subcellular structures and protein complexes at nano-meter resolution at specific stages of cell-cycle in a quantitative manner, and therefore can enable to visualize biological processes which have not been able to study due to the limited resolution of conventional microscopy.
The correlative imaging technique was applied to study nuclear envelope (NE) assembly during mitotic exit, and could demonstrate for the first time that the NE forms from highly fenestrated ER sheet whose holes progressively shrink. This finding provides a new approach to explore the ER-NE connectivity and ask how it is regulated to ensure proper ER-nucleus communication.
A quantitative map of nuclear pore assembly reveals two distinct mechanisms.
Otsuka, Shotaro; Tempkin, Jeremy O B; Zhang, Wanlu; Politi, Antonio Z; Rybina, Arina; Hossain, M Julius; Kueblbeck, Moritz; Callegari, Andrea; Koch, Birgit; Morero, Natalia Rosalia; Sali, Andrej; Ellenberg, Jan
A mitotic chromatin phase transition prevents perforation by microtubules.
Schneider, Maximilian W G; Gibson, Bryan A; Otsuka, Shotaro; Spicer, Maximilian F D; Petrovic, Mina; Blaukopf, Claudia; Langer, Christoph C H; Batty, Paul; Nagaraju, Thejaswi; Doolittle, Lynda K; Rosen, Michael K; Gerlich, Daniel W
Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane openings.
Otsuka, Shotaro; Steyer, Anna M; Schorb, Martin; Hériché, Jean-Karim; Hossain, M Julius; Sethi, Suruchi; Kueblbeck, Moritz; Schwab, Yannick; Beck, Martin; Ellenberg, Jan
This is a collaboration project with Daniel Gerlich's group at IMBA.
Project title: “Elucidating the mechanics of mitotic chromosome assembly by light-, electron-, and atomic force microscopy"
The Otsuka Group participates in the special doctoral program 'Signaling Mechanisms in Cellular Homeostasis (SMICH)', funded by the Austrian Science Fund (FWF).
Austrian Academy of Sciences DOC Fellowship: Helena Bragulat Teixidor
Project title: “How do endoplasmic reticulum and nucleus communicate?" (P 36743-B)
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced