On this page
The life cycle of sexually reproducing eukaryotes depends on two specialized chromosome segregation programs: mitosis and meiosis. Whereas mitosis drives cellular proliferation and the stable propagation of the genome, meiosis promotes genetic diversity and the formation of haploid gametes, which combine at fertilization to restore the diploid state. Remarkably, both genome stability and genetic diversity depend on the cell’s ability to repair damaged chromosomes using homologous recombination.
We study how cells rewire their DNA repair machinery in order to: 1) promote genetic diversity and haploidisation during meiosis; 2) prevent genomic instability - and cancer - during mitotic proliferation; 3) ensure the efficient disengagement of recombination intermediates prior chromosome segregation and cell division.
Our group uses a combination of approaches (cell biology, biochemistry and structural biology) and model systems (budding yeast, mouse and human tissue culture) to investigate how cells rewire DNA repair according to the specialized needs of mitotic proliferation and meiosis.
Joao Matos was born and raised in Portugal. He moved to Germany in 2003, to start his PhD work with Wolfgang Zachariae (MPI-CBG). In 2009, he moved to England, to carry out postdoctoral work with Stephen West (London Research Institute). In 2014, Joao was appointed Assistant Professor at the ETH, Switzerland. He joined the University of Vienna in 2020, as Professor of Cell and Developmental Biology.
The Bloom (BLM) DNA helicase is an important enzyme in DNA repair and the maintenance of genome stability. Mutations in BLM are associated with Bloom’s Syndrome, a disease characterized by growth defects and increased susceptibility to cancer. In recent work published in Science Advances, we have elucidated how cells regulate the correct timing of BLM activity during the mitotic cell division program.
When the MUS81 DNA endonuclease is left uncontrolled in human cells, it breaks up chromosomes into tiny pieces. This is damaging to cells, but useful for killing tumours. We are trying to understand the underlying mechanism. (image credit: Jiradet Gloggnitzer)
Holliday Junctions are important DNA repair intermediates that form during meiosis. The junction is represented by a swiss bread specialty made from yeast dough. It is just about to be cut by the Yen1/GEN1 resolvase (hands and knife) to allow faithful segregation of the two chromosomes. The timing of the cut needs to be tightly regulated (wrist watch). (image credit: Meret Arter)
We have used affinity proteomics to characterize the composition and interaction landscape of 7 DNA repair enzymes during mitotic proliferation and meiosis. We reported a concerted and context-specific rewiring of the interactomes and reveal meiosis-specific network components with roles in crossing-over.
https://www.maxperutzlabs.ac.at/news/latest-news/l/new-funding-for-meiosis-research-100248
https://www.maxperutzlabs.ac.at/news/latest-news/l/getting-out-of-your-comfort-zone-1-100227
We are looking for talented, ambitious scientists at various levels. Postdoc, PhD and Master student positions are currently available. Please contact Joao and include a summary of previous research interests, a statement with your motivation to join our team, and the names of potential referees in your application.
The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells.
Balbo Pogliano, Chiara; Ceppi, Ilaria; Giovannini, Sara; Petroulaki, Vasiliki; Palmer, Nathan; Uliana, Federico; Gatti, Marco; Kasaciunaite, Kristina; Freire, Raimundo; Seidel, Ralf; Altmeyer, Matthias; Cejka, Petr; Matos, Joao
Regulation of the MLH1-MLH3 endonuclease in meiosis.
Cannavo, E; Sanchez, A; Anand, R; Ranjha, L; Hugener, J; Adam, C; Acharya, A; Weyland, N; Aran-Guiu, X; Charbonnier, J-B; Hoffmann, E R; Borde, V; Matos, J; Cejka, P
Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis.
Grigaitis, R; Ranjha, L; Wild, P; Kasaciunaite, K; Ceppi, I; Kissling, V; Henggeler, A; Susperregui, A; Peter, M; Seidel, R; Cejka, P; Matos, J
Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis.
Wild, P; Susperregui, A; Piazza, I; Dörig, C; Oke, A; Arter, M; Yamaguchi, M; Hilditch, A T; Vuina, K; Chan, K C; Gromova, T; Haber, J E; Fung, J C; Picotti, P; Matos, J
Regulated Crossing-Over Requires Inactivation of Yen1/GEN1 Resolvase during Meiotic Prophase I.
Arter, M; Hurtado-Nieves, V; Oke, A; Zhuge, T; Wettstein, R; Fung, J C; Blanco, M G; Matos, J
A Mechanism for Controlled Breakage of Under-replicated Chromosomes during Mitosis.
Duda, H; Arter, M; Gloggnitzer, J; Teloni, F; Wild, P; Blanco, M G; Altmeyer, M; Matos, J
Dual control of Yen1 nuclease activity and cellular localization by Cdk and Cdc14 prevents genome instability.
Blanco, Miguel G; Matos, Joao; West, Stephen C
Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation.
Matos, Joao; Blanco, Miguel G; West, Stephen C
Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis.
Matos, Joao; Blanco, Miguel G; Maslen, Sarah; Skehel, J Mark; West, Stephen C
Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I.
Matos, Joao; Lipp, Jesse J; Bogdanova, Aliona; Guillot, Sylvine; Okaz, Elwy; Junqueira, Magno; Shevchenko, Andrej; Zachariae, Wolfgang
Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1.
Petronczki, Mark; Matos, Joao; Mori, Saori; Gregan, Juraj; Bogdanova, Aliona; Schwickart, Martin; Mechtler, Karl; Shirahige, Katsuhiko; Zachariae, Wolfgang; Nasmyth, Kim
Phage therapy for treating bacterial infections: a double-edged sword
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
SLiMs and SHelMs: Decoding how short linear and helical motifs direct PPP specificity to direct signaling
Title to be announced
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Engineered nanocarriers for imaging of small proteins by CryoEM
Bacterial cell envelope homeostasis at the (post)transcriptional level
Title to be announced
Hydrologic extremes alter mechanisms and pathways of carbon export from mountainous floodplain soils
Dissecting post-transcriptional gene expression regulation in humans and viruses
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
Polyploidy and rediploidisation in stressful times
Title to be announced
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced